Least Angle Regression and LASSO for Large Datasets

نویسندگان

  • Chris Fraley
  • Tim Hesterberg
چکیده

Least-Angle Regression and the LASSO (`1-penalized regression) offer a number of advantages in variable selection applications over procedures such as stepwise or ridge regression, including prediction accuracy, stability and interpretability. We discuss formulations of these algorithms that extend to datasets in which the number of observations could be so large that it would not be possible to access the matrix of predictors as a unit in computations. Our methods require a single pass through the data for orthogonal transformation, effectively reducing the dimension of the computations required to obtain the regression coefficients and residual sums-of-squares to the number of predictors, rather than the number of observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Forward stagewise regression and the monotone lasso

Abstract: We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing tha...

متن کامل

Discussion of Least Angle Regression

Algorithms for simultaneous shrinkage and selection in regression and classification provide attractive solutions to knotty old statistical challenges. Nevertheless, as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statistical practice. Two particular reasons for this may be the relative inefficiency of the original Lasso algorithm, and the relative complexity of mor...

متن کامل

Discussion of “ Least Angle Regression ” by Efron

Algorithms for simultaneous shrinkage and selection in regression and classification provide attractive solutions to knotty old statistical challenges. Nevertheless, as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statistical practice. Two particular reasons for this may be the relative inefficiency of the original Lasso algorithm and the relative complexity of more...

متن کامل

Least angle and l 1 penalized regression : A review ∗ †

Least Angle Regression is a promising technique for variable selection applications, offering a nice alternative to stepwise regression. It provides an explanation for the similar behavior of LASSO (l1-penalized regression) and forward stagewise regression, and provides a fast implementation of both. The idea has caught on rapidly, and sparked a great deal of research interest. In this paper, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical Analysis and Data Mining

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009